metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Theivanayagam C Deivaraj and Jagadese J. Vittal*

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117 543

Correspondence e-mail: chmjjv@nus.edu.sg

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.007 \text{ Å}$ Disorder in solvent or counterion R factor = 0.064 wR factor = 0.161 Data-to-parameter ratio = 20.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(dithioacetato- $\kappa^2 S$)bis(triphenylphosphine- κP)copper(I) 1.5-toluene solvate

The crystal structure of the title compound, $[Cu(C_2H_3S_2)-(C_{18}H_{15}P)_2]\cdot 1.5C_7H_8$, is reported. The compound is monomeric with the copper metal atom assuming a distorted tetrahedral geometry.

Received 16 October 2001 Accepted 30 October 2001 Online 10 November 2001

Comment

We have been interested in exploring the chemistry of thiocarboxylates for many years. Recently we have synthesized and characterized a series triphenylphosphine adducts of copper(I) thioacetate and copper(I) thiobenzoate (Deivaraj et al., 2000). The bis(triphenylphosphine) adduct of copper(I)thioacetate is a dimer while the analogous thiobenzoate compound is a monomer. Similarly, the structure of $[(Ph_3P)_2Cu(S_2C-C_6H_4-CH_3)]$ is also known to be monomeric (Camus et al., 1980). The title compound, (I), was obtained as a minor product of decomposition during an attempted synthesis of [(Ph₃P)₂CuGa(SC{O}Me)₄]. Structural similarities between monothio- and dithiocarboxylates are not well understood, especially in terms of the influence of the Rgroups. Hence, we carried out a structural analysis of the title compound and we report here the outcome of our investigation.

The dithioacetate complex crystallizes with disordered toluene solvate molecules; the first was modelled over two positions with occupancies 0.7 and 0.3, the second over two positions with occupancies 0.25 and 0.25. The central Cu atom assumes a distorted tetrahedral geometry; it is bonded to two triphenylphosphine ligands and the dithioacetate ligand is bonded to the central metal atom in a bidentate fashion, a common bonding mode observed in dithiocarboxylate systems (Livingstone, 1987). Thus the coordination environment around the copper metal atom is P_2S_2 , accounting for its distorted tetrahedral geometry.

The Cu–S distances [2.431(1) and 2.456 (1) Å] observed in the title compound are comparable to those observed in the compound [(Ph₃P)₂Cu(S₂C–C₆H₄–CH₃)] (Camus *et al.*, 1980). Similarly, the Cu1–P1 and Cu1–P2 distances of 2.261 (1) and 2.260 (1) Å are comparable to those [2.258(2) and 2.246 (3) Å] observed in [(Ph₃P)₂Cu(S₂C–C₆H₄–CH₃)]. The two C–S distances are 1.645 (5) and 1.659 (5) Å. A CSD search (Allen

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

 $D_x = 1.244 \text{ Mg m}^{-3}$

Cell parameters from 8192

Mo $K\alpha$ radiation

reflections

 $\theta = 2.1 - 25.0^{\circ}$ $\mu=0.70~\mathrm{mm}^{-1}$

T = 293 (2) K

 $R_{\rm int}=0.028$

 $\theta_{\rm max} = 26.4^{\circ}$

 $h = -13 \rightarrow 12$

 $k = -30 \rightarrow 24$

 $l=-19\rightarrow 20$

Blocks, cut, red

0.40 \times 0.32 \times 0.24 mm

6380 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_o^2) + (0.0566P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

+ 4.3706P]

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$

Figure 1

A view of the dithioacetate complex, showing the labelling of the non-H atoms. Displacement ellipsoids are drawn at the 50% probability level. The disordered solvent molecules have been omitted.

et al., 1991) indicates that the normal range of C-S distances in similar compounds is 1.640–1.790 Å. The fact that the two C-S distances are almost equal and fall in the lower end of the normal range observed in similar compounds suggests that the C-S bond has acquired partial double-bond character owing to delocalization of electrons.

The P2-Cu1-P1 and S1-Cu1-S2 angles are 119.64 (4) and 71.92 (4)° respectively. The P–Cu–S angles range from 107.09 (4) to 120.2 (4) $^{\circ}$. These angles clearly illustrate the extent of distortion in the tetrahedral geometry around the copper metal atom. The S–Cu–S bond angle, 71.92 (4) $^{\circ}$, is comparable to the bite angle observed in the compound $[(Ph_3P)_2Cu(S_2C-C_6H_4-CH_3)]$ [73.5(1)°]; such a bite angle is common in dicarboxylate compounds. However, the O-Cu-S bite angle observed in $[(Ph_3P)_2Cu(SC{O}Ph)]$ is much smaller [65.19 (6) $^{\circ}$] owing to geometry constraints.

In conclusion, the molecular structure of the title compound is a monomer, similar to its tolyl derivative (Camus et al., 1980). However, the corresponding monothioacetate compound is dimeric in the solid state.

Experimental

The title compound was obtained as a minor product during an attempted synthesis of bimetallic compounds of the type [(Ph₃P)₂CuGa(SC{O}Me)₄] by reacting appropriate amounts of [(Ph₃P)₂CuNO₃] with Ga(NO₃)₃·H₂O and Na⁺·MeC{O}S⁻. Brightred single crystals of the title compound were obtained from a toluene solution of the compound stored at 268 K for nearly two days.

```
C48.50H45CuP2S2
M_r = 817.44
Monoclinic, P2_1/n
a = 10.8877 (2) Å
b = 24.1232 (4) Å
c = 16.7066 (2) \text{ Å}
\beta = 95.772 (1)^{\circ}
V = 4365.68 (12) \text{ Å}^3
Z = 4
```

Data collection

SMART CCD diffractometer w scans Absorption correction: empirical (SADABS; Sheldrick, 2000) $T_{\min} = 0.751, \ T_{\max} = 0.845$ 23356 measured reflections 8735 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.161$ S = 1.108735 reflections 428 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Cu1-P2	2.2600 (10)	\$1-C1	1.645 (5)
Cu1-P1	2.2614 (10)	S2-C1	1.659 (5)
Cu1-S1	2.4314 (12)	C1-C2	1.527 (6)
Cu1-S2	2.4556 (12)		
P2-Cu1-P1	119.64 (4)	S1-Cu1-S2	71.92 (4)
P2-Cu1-S1	118.14 (5)	C1-S1-Cu1	84.26 (15)
P1-Cu1-S1	110.96 (4)	C1-S2-Cu1	83.19 (15)
P2-Cu1-S2	107.09 (4)	C2-C1-S1	119.4 (4)
P1-Cu1-S2	120.21 (4)		

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Financial support for this research to JJV from the National University of Singapore (R-143-000-084-112) is gratefully acknowledged.

References

- Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. & Watson, D. G. (1991) J. Chem. Inf. Comput. Sci. 31, 187.
- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SMART and SAINT. Version 5.611. Bruker AXS Inc., Madison, Wisconsin, USA.
- Camus, A., Marsich, N. & Nardin, G. (1980). J. Organomet. Chem. 188, 389-399
- Deivaraj, T. C., Lai, G. X. & Vittal, J. J. (2000). Inorg. Chem. 39, 1028-1034.
- Livingstone, S. E. (1987). Comprehensive Coordination Chemistry, Vol 2, edited by G. Willkinson, R. D. Gillard & J. A. McCleverty, p. 584. Oxford: Pergamon.
- Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.